

Darth-Vader-RPi’s documentation

 README

README

 The main configuration file

The main configuration file

The default settings used by the start_dv script are found in the
main configuration file [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json]. It is referred to as main because there is
another config file you could edit, the logging configuration file [https://github.com/raul23/Darth-Vader-RPi/blob/master/darth_vader_rpi/configs/default_logging_cfg.json].

The main configuration file can be edited with the following command:

$ start_dv -e cfg

The logging configuration file could be instead edited with the -e log_cfg
command-line option.

The previous command will open the configuration file with the default text
editor that is associated with JSON files as specified in your system, e.g.
atom on macOS or vim on Linux.

If you want to use another text editor you can specify it with the -a APP
command-line option:

$ start_dv -e cfg -a TextEdit

In what follows, you wil find an explanation for each setting found in the
main configuration file [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json], presented in alphabetic order.

Important

Some of the settings (quiet,
simulation, and verbose) in
the configuration file can be also set through the script’s command-line
arguments. The command-line arguments override the settings found in the
configuration file.

See also

The script start_dv

audio_channels

Three audio channels are used for this project:

	channel 0: used for Darth Vader’s breathing sound which plays in the
background almost as soon as the start_dv script runs. Its volume
is set by default at 0.2 since we don’t want to overwhelm the other sounds
playing in the other audio channels

	channel 1: used for playing the Imperial March song and all Darth
Vader quotes. Its volume is set by default at 1.0

	channel 2: used for playing the lighsaber sound effects and the closing
sound. Its volume is set by default at 1.0

The setting audio_channels [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L56] in the configuration file defines these three
audio channels with their default volume.

Audio channels and their default volume

"audio_channels": [
 {
 "channel_id": 0,
 "channel_name": "breathing_sound",
 "volume": 0.2
 },
 {
 "channel_id": 1,
 "channel_name": "song_and_quotes",
 "volume": 1.0
 },
 {
 "channel_id": 2,
 "channel_name": "lightsaber_and_closing_sounds",
 "volume": 1.0
 }
],

The Python package pygame [https://www.pygame.org/docs/] is used for playing the various sounds used in this
project.

Note

	Volume takes values in the range 0.0 to 1.0 (inclusive).

	If value < 0.0, the volume will not be changed

	If value > 1.0, the volume will be set to 1.0

As per the pygame documentation [https://www.pygame.org/docs/ref/mixer.html#pygame.mixer.Sound.set_volume].

default_led_symbols

The setting default_led_symbols [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L7] in the configuration file defines the
default LED symbols used by all output channels. A LED symbol is used for
each output state (ON and OFF).

By default, the symbols used for representing LEDs in the terminal are the
following:

"default_led_symbols": {
 "ON": "🛑",
 "OFF": "⚪"
},

See also

Change LED symbols

gpio_channels

The setting gpio_channels [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L11] in the configuration file defines the GPIO pins
connected to LEDs and push buttons.

GPIO channels for the following I/O devices are defined:

	Lightsaber button: it controls the LEDs and sound effects for the
lightsaber

	Song button: when pressed it plays the Imperial March song

	Quotes button: when pressed it plays one of Darth Vader quotes

	Slot LEDs: they consist of three LEDs referred to as Top, Middle,
and Bottom LEDs and are found on Darth Vader’s chest control box

	Lightsaber LEDs: when the lightsaber button is pressed, these LEDs are
turned ON/OFF

NOTE: on the Darth Vader’s figurine, three LEDs are used to turn on the
lightsaber as explained in the Connection diagram. However, when
simulating the Raspberry Pi with SimulRPi, only one LED is shown in
the terminal

gpio_channels lists GPIO channel objects with the following properties:

	channel_id: this property should not be modified because it is
used to uniquely identify the GPIO channels

	channel_name: it will be displayed in the terminal along with the LED
symbol. By default, the channel number is displayed if channel_name is
the empty string, i.e. channel_name = ""

	channel_number: it identifies the GPIO pin based on the numbering
system you have specified (BOARD or BCM)

	key: it is only defined for button objects. It specifies the mapping
between a keyboard key and a push button so you can simulate push buttons
with your keyboard

Example: changing keymap for the Song button

 {
 "channel_id": "song_button",
 "channel_name": "song_button",
 "channel_number": 24,
 "key": "shift_r"
 }

	led_symbols: it is only defined for LED objects. It is a dictionary
defining the symbols to be used when the LED is turned ON and OFF. If not
found for a LED object, then the default LED symbols will be used

Example: changing the default LED symbols for the
lightsaber LEDs

 {
 "channel_id": "lightsaber_led",
 "channel_name": "lightsaber",
 "channel_number": 22,
 "led_symbols": {
 "ON": "\\033[1;31;48m(0)\\033[1;37;0m",
 "OFF": "(0)"
 }
 }

Let’s take a look at two GPIO channels found in the configuration file:

Example: GPIO channels for the lightsaber button and LEDs

"gpio_channels": [
 {
 "channel_id": "lightsaber_button",
 "channel_name": "lightsaber_button",
 "channel_number": 23,
 "key": "cmd"
 },
 {
 "channel_id": "lightsaber_led",
 "channel_name": "lightsaber",
 "channel_number": 22
 }
]

Thus, in this example, you have a push button connected to the GPIO pin 23
(based on the BCM mode), controlling the lightsaber by turning it ON/OFF and
producing the lightsaber sound effects (drawing, retraction, and hum sounds).
Also, the keyboard key cmd simulates the lightsaber push button when
running the start_dv script on your computer.

Finally, the ligthsaber LEDs are connected to GPIO pin 22 (BCM) and are turned
ON/OFF when the corresponding push button (or cmd key) is pressed.

See also

	Change GPIO channel name and number

	Change keymap

	Change LED symbols

mode

The setting mode [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L5] in the configuration file defines the numbering system
(BOARD or BCM) used to identify the GPIO channels. By default, BCM is
used.

As per the RPIO.GPIO documentation [https://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage/]:

BOARD refers to the pin numbers on the P1 header of the Raspberry Pi
board. The advantage of using this numbering system is that your hardware
will always work, regardless of the board revision of the RPi. You will not
need to rewire your connector or change your code.

BCM is a lower level way of working - it refers to the channel numbers
on the Broadcom SOC. You have to always work with a diagram of which channel
number goes to which pin on the RPi board. Your script could break between
revisions of Raspberry Pi boards.

quiet

The setting quiet [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L2] in the configuration file is a flag (set to false by
default) that allows you to run the start_dv script without printing
anything on the terminal, not even the LED symbols when running the simulation
nor the exceptions are printed.

However, you will still be able to hear sounds and interact with the push
buttons or keyboard.

The setting quiet set to false by default

{
 "quiet": false,
 "simulation": false,
 "verbose": false,
 "mode": "BCM"
}

This flag can also be set directly through the script’s -q command-line
option:

$ start_dv -q

See also

Script’s list of options

quotes

The setting quotes [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L73] in the configuration file defines all the Darth Vader’s
quotes used for this project.

By default, two movie lines are included:

	“I am your father” [https://www.youtube.com/watch?v=xuJEYdOFEP4]

	“Nooooo” [https://www.youtube.com/watch?v=ZscVhFvD6iE]

Each quote is represented in the configuration file as objects having the
following properties:

	id: unique identifier

	name: it will be displayed in the terminal

	filename: it is relative to the directory
sounds_directory

	audio_channel_id: all quotes should be played in channel 1 as
explained in audio_channels

Example: two Darth Vader quotes

 "quotes": [
 {
 "id": "dont_make_me_destroy_you",
 "name": "Don't make me destroy you",
 "filename": "quote_dont_make_me_destroy_you.ogg",
 "audio_channel_id": 1
 },
 {
 "id": "give_yourself_to_the_dark_side",
 "name": "Give yourself to the dark side",
 "filename": "quote_give_yourself_to_the_dark_side.ogg",
 "audio_channel_id": 1
 }
]

Important

All Darth Vader quotes should be played in channel 1 as explained in
audio_channels

See also

	The setting audio_channels

	Add Darth Vader quotes

	Change channel volume

	Change paths to audio files

simulation

The setting simulation [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L3] in the configuration file is a flag (set to false by
default) that allows you to run the start_dv script on your computer,
instead of a Raspberry Pi (RPi).

The SimulRPi.GPIO [https://pypi.org/project/SimulRPi/] module is used in order to partly fake RPi.GPIO [https://pypi.org/project/RPi.GPIO/] and
simulate I/O devices connected to an RPi such as LEDs and push buttons by
displaying LED symbols in the terminal and monitoring the keyboard for any
pressed key.

This flag can also be set directly through the script’s -s command-line
option:

$ start_dv -s

Note

SimulRPi.GPIO [https://simulrpi.readthedocs.io/en/latest/api_reference.html#module-SimulRPi.GPIO] makes use of the pynput [https://pynput.readthedocs.io] package to monitor the keyboard
for any pressed key.

See also

Script’s list of options

slot_leds

Three LEDs (labeled as top, middle, and top) illuminate the slots in
Darth Vader’s chest control box.

The setting slot_leds [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L51] in the configuration file defines the sequence the
slot LEDs should be turned ON/OFF. This sequence corresponds to Darth Vader’s
physiological state, e.g. if he is in a calm mood the slot LEDs will blink in a
different pattern than if he was in action.

slot_leds is an object that takes the following properties:

	delay_between_steps: delay in seconds between each step in the sequence

	time_per_step: time in seconds each step will last

	sequence: the type of the sequence which can be either “action”,
“calm” or a custom sequence. The sequence will keep on repeating
until the script exits

Example: a slot_leds object with the calm sequence

 "slot_leds":{
 "delay_between_steps": 0.5,
 "time_per_step": 1,
 "sequence": "calm"
 },

The user can also provide its own sequence by using a list of LED labels
{‘top’, ‘middle’, ‘bottom’} arranged in a sequence specifying the
order the slot LEDs should turn ON/OFF.

Example: custom slot LEDs sequence

"sequence":[
 ["top", "bottom"],
 [],
 ["middle"],
 []
]

This simple sequence will turn ON/OFF the slot LEDs in this order:

1. top + bottom LEDs turned ON
2. All LEDs turned OFF
3. middle LED turned ON
4. All LEDs turned OFF

Each step in the sequence will lasts for time_per_step seconds and there will
be a delay of delay_between_steps seconds between each step in the sequence.
And the whole sequence will keep on repeating until the script exits.

Note

This is how the action and calm sequences are exactly defined:

Action sequence

"sequence":[
 ["top", "middle", "bottom"],
 ["top", "bottom"],
 ["top", "middle", "bottom"],
 ["top"],
 [],
 ["top", "middle", "bottom"],
 ["top"],
 ["top", "middle", "bottom"],
 ["middle", "bottom"],
 [],
 ["top", "bottom"],
 ["top", "middle", "bottom"],
 ["top", "bottom"],
 [],
 ["top"],
 []
]

Calm sequence

"sequence":[
 ["middle"],
 ["top"],
 ["middle"],
 ["top"],
 ["middle"],
 ["top"],
 ["top"],
 [],
 ["bottom"],
 []
]

Note

The default sequences of slot LEDs were obtained from this YouTube video:
Empire Strikes Back chest box light sequence [https://youtu.be/E2J_xl2MbGU?t=333].

See also

Change slot LEDs sequence

songs

The setting songs [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L87] in the configuration file defines the songs that can be
played as part of the project.

At the moment, only the Imperial March song by Jacob Townsend [https://soundcloud.com/jacobtownsend1/imperial-march] is supported.

The setting songs takes a list of song objects having the following
properties:

	id: this property should not be modified because it is
used to uniquely identify the songs

	name: the name of the song which will be shown in the terminal

	filename: it is relative to the directory
sounds_directory

	audio_channel_id: all songs should be played in channel 1 as
explained in audio_channels

The Imperial March song playing in audio channel #1

 "songs": [
 {
 "id": "imperial_march_song",
 "name": "Imperial March song",
 "filename": "song_the_imperial_march.ogg",
 "audio_channel_id": 1
 }
],

Important

All songs should be played in channel 1 as explained in
audio_channels

See also

	The setting audio_channels

	Change channel volume

	Change paths to audio files

sound_effects

The setting sound_effects [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L95] in the configuration file defines the following
sounds:

	Breathing sound: almost as soon as the start_dv script runs,
Darth Vader’s breathing sound starts playing in the background until the
script ends

	Lightsaber drawing sound: when the lightsaber button is pressed, the
drawing sound is played first followed by the hum sound which goes on
until the button is pressed again which will produce the retraction sound

	Lightsaber hum sound: plays immediately after the lightsaber drawing
sound and goes on until the lightsaber button is pressed again

	Lightsaber retraction sound: plays when the lightsaber button is
pressed while the hum sound is playing

	Closing sound: plays after the user presses ctrl + c to exit
from the script. By default, it is not played at the end

sound_effects takes a list of sound objects having the following properties:

	id: this property should not be modified because it is
used to uniquely identify the sound effects

	name: it is the name of the sound which will be displayed in the
terminal

	filename: it is relative to the directory
sounds_directory

	audio_channel_id: the audio channel used for playing the sound. See
audio_channels to know what channel is used for
each type of sounds

	mute: it is only defined for the breathing and closing sounds. If set
to true, the sound will not be played

	loops: only defined for the breathing sound. It is the number of times
the sound should be repeated. If set to -1, it will be repeated
indefinitely

Example: two sound effects playing in different audio channels

 "sound_effects": [
 {
 "id": "breathing_sound",
 "name": "Breathing sound",
 "filename": "darth_vader_breathing.ogg",
 "audio_channel_id": 0,
 "mute": false,
 "loops": -1
 },
 {
 "id": "closing_sound",
 "name": "Nooooo [Closing]",
 "filename": "quote_nooooo.ogg",
 "audio_channel_id": 2,
 "mute": true
 }
]

Important

The breathing sound should use channel 0, while the other sound effects
should use channel 2. Hence, the breathing sound can be heard in
the background while a sound effect is also being played (e.g. the drawing
sound of the lightsaber). See audio_channels.

See also

	The setting audio_channels

	Change closing sound

	Change paths to audio files

	Mute breathing sound

sounds_directory

The setting sounds_directory [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L6] in the configuration file defines the directory
where all the audio files are saved.

By default, sounds_directory points to the path where the dv_sounds [https://github.com/raul23/DV-Sounds]
package is installed. dv_sounds [https://github.com/raul23/DV-Sounds] is used to download the various sounds
(e.g. sound efffects) needed for the project.

All the audio filenames found in the configuration file are defined relative to
sounds_directory.

Example: Filename for the breathing-sound audio file

"sound_effects": [
 {
 "id": "breathing_sound",
 "name": "Breathing sound",
 "filename": "darth_vader_breathing.ogg",
 "audio_channel_id": 0,
 "mute": false,
 "loops": -1
 }
]

In this example, the audio file darth_vader_breathing.ogg is to be found in
the directory sounds_directory.

See also

Change paths to audio files

verbose

The setting verbose [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L4] in the configuration file is a flag (set to false by
default) that allows you to run the start_dv script by logging to the
terminal all messages (logging level is set to DEBUG when verbose is
true). Also, when there is an exception, a traceback is printed so you can
pinpoint exactly where the error occurred in the code which is not the case
when running the script without verbose (you only get a one-line error
message).

Example: running the script without verbose

ERROR AttributeError: 'Namespace' object has no attribute 'edits'
ERROR Program exited with 1

Example: running the script with verbose

ERROR 'Namespace' object has no attribute 'edits'
Traceback (most recent call last):
 File "start_dv.py", line 795, in main
 if args.edits:
AttributeError: 'Namespace' object has no attribute 'edits'
ERROR Program exited with 1

This flag can also be set directly through the script’s -v command-line
option:

$ start_dv -v

See also

Script’s list of options

 Change the default settings

Change the default settings

	Important tips

	Add Darth Vader quotes

	Change channel volume

	Change closing sound

	Change GPIO channel name and number

	Change keymap

	Change LED symbols

	Case 1: change default_led_symbols

	Case 2: change gpio_channels

	Change paths to audio files

	Change slot LEDs sequence

	Mute breathing sound

	Run the script as quiet or verbose

Important tips

	This is the command to edit the configuration file [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L1] with a default
text editor as defined in your system:

$ start_dv -e cfg

Or with a specific text editor:

$ start_dv -e cfg -a APP_NAME

where APP_NAME is the name of a text editor, e.g. TextEdit

	To end the start_dv script, press ctrl + c

	When adding audio files, don’t use mp3 as the file format. Instead, use
ogg (compressed) or wav (uncompressed). The reason is that mp3 won’t
work well with pygame’s simultaneous playback capability.

Reference: stackoverflow [https://stackoverflow.com/a/59742418]

Add Darth Vader quotes

If you want to add more Darth Vader quotes, you have to edit the setting
quotes [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L73] in the configuration file. Open the configuration file with:

$ start_dv -e cfg

Each quote is represented in the configuration file as objects having the
following properties:

	id: unique identifier

	name: it will be displayed in the terminal

	filename: it is relative to the directory
sounds_directory

	audio_channel_id: all quotes should be played in channel 1 as
explained in audio_channels

Add your quote object to the list in quotes, like in the following example:

Example: adding a new quote

"quotes": [
 {
 "id": "there_is_no_escape",
 "name": "There is no escape",
 "filename": "quote_there_is_no_escape.ogg",
 "audio_channel_id": 1
 },

See also

	The setting audio_channels

	The setting quotes

	Change channel volume

	Change paths to audio files

Change channel volume

To change the volume for an audio channel, open the configuration file and edit
the channel’s volume found in the setting audio_channels [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L56]:

$ start_dv -e cfg

Audio channels and their default volume

"audio_channels": [
 {
 "channel_id": 0,
 "channel_name": "breathing_sound",
 "volume": 0.2
 },
 {
 "channel_id": 1,
 "name": "song_and_quotes",
 "volume": 1.0
 },
 {
 "channel_id": 2,
 "name": "lightsaber_and_closing_sounds",
 "volume": 1.0
 }
],

What each channel controls:

	Channel 0 controls Darth Vader’s breathing sound

	Channel 1 controls the Imperial March song and all Darth Vader quotes

	Channel 2 controls the lighsaber sound effects and the closing sound

Note

Volume takes values in the range 0.0 to 1.0 (inclusive). As per the
pygame documentation [https://www.pygame.org/docs/ref/mixer.html#pygame.mixer.Sound.set_volume].

See also

The setting audio_channels

Change closing sound

When the start_dv script is exiting after the user presses
ctrl + c, a sound is produced. By default, no closing sound is produced
and if it were to play, it would be the “Nooooo” [https://www.youtube.com/watch?v=ZscVhFvD6iE] quote.

To change the default closing sound, edit the setting sound_effects [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L95] in the
configuration file which can be opened with:

$ start_dv -e cfg

At the end of the list in sound_effects, you will find the closing_sound [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L123]
object. These are the properties you can modify for this object:

	name: it is the name of the sound which will be displayed in the
terminal

	filename: it is relative to
sounds_directory

	mute: if true, nothing will be played at the end of the script.
Otherwise, the closing sound will be played when the script is terminating.

Example: choosing another closing sound by changing filename

"sound_effects": [
 {
 "id": "closing_sound",
 "name": "Bye [Closing]",
 "filename": "bye.ogg",
 "audio_channel_id": 2,
 "mute": false
 },

Note

By default, the closing sound is not played at the end of the
start_dv script. Set its property mute to true in order to play
the closing sound when the script exits.

See also

	The setting audio_channels

	The setting sound_effects

	Change channel volume

	Change paths to audio files

Change GPIO channel name and number

The GPIO channels [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L11] are identified in the terminal by their channel_name
along with their LED symbols. If channel_name is not available, then its
channel_number is shown.

The channel_number is the GPIO channel number of a pin used for connecting
an I/O device (e.g. LED) and is defined based on the numbering system you have
specified (BOARD or BCM).

To change a GPIO channel’s channel_name and channel_number, open the
configuration file with:

$ start_dv -e cfg

And edit its properties channel_name and channel_number, like in the
following example.

Example: changing the channel_name and channel_number
for the bottom LED

"gpio_channels": [
 {
 "channel_id": "bottom_led",
 "channel_name": "Bottom LED",
 "channel_number": 15
 },

Important

Don’t change the property channel_id since it is used to uniquely
identify the GPIO channels.

See also

The setting gpio_channels

Change keymap

If you want to change the default keymap used for the three push buttons, edit
the setting gpio_channels [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L11] in the configuration file which can be opened with:

$ start_dv -e cfg

Default keymap used for the three push buttons

"gpio_channels": [
 {
 "channel_id": "lightsaber_button",
 "channel_name": "lightsaber_button",
 "channel_number": 23,
 "key": "cmd"
 },
 {
 "channel_id": "song_button",
 "channel_name": "song_button",
 "channel_number": 24,
 "key": "alt"
 },
 {
 "channel_id": "quotes_button",
 "channel_name": "quotes_button",
 "channel_number": 25,
 "key": "alt_r"
 },

In order to change the default keymap, you will need to change the value for
key which refers to the name of the keyboard key associated with a given
push button.

The names of keyboard keys that you can use are those specified in the
SimulRPi’s documentation [https://simulrpi.readthedocs.io/en/latest/api_reference.html#content-default-keymap-label], e.g.
media_play_pause, shift, and shift_r.

Example: choosing shift_r for the Quotes button

{
 "channel_id": "quotes_button",
 "channel_name": "quotes_button",
 "channel_number": 25,
 "key": "shift_r"
},

Note

On mac, I recommend using the following keyboard keys because they don’t
require running the start_dv script with sudo: alt, alt_r,
cmd, cmd_r, ctrl, ctrl_r, media_play_pause,
media_volume_down, media_volume_mute, media_volume_up, shift,
and shift_r.

Ref.: Platform limitations [https://simulrpi.readthedocs.io/en/latest/api_reference.html#important-platform-limitations-label]

See also

The setting gpio_channels

Change LED symbols

You can either:

	change the default LED symbols used by all output channels, or

	change the LED symbols for specific output channels

Case 1: change default_led_symbols

To change the default LED symbols used by all output channels, edit the
setting default_led_symbols [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L7] by opening the configuration file:

$ start_dv -e cfg

Add your LED symbols for each output state:

"default_led_symbols": {
 "ON": "🔵",
 "OFF": "⚪ "
},

Case 2: change gpio_channels

To change the LED symbols for specific output channels, edit the setting
gpio_channels [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L11] by opening the configuration file:

$ start_dv -e cfg

You need to modify the property led_symbols for a given LED object defined
in gpio_channels.

Example: changing the symbols for the lightsaber LED

 "gpio_channels": [
 {
 "channel_id": "lightsaber_led",
 "channel_name": "lightsaber",
 "channel_number": 22,
 "led_symbols": {
 "ON": "\\033[1;31;48m(0)\\033[1;37;0m",
 "OFF": "(0)"️
 }
 }
]

Note

If you omit led_symbols as a property for a LED object, the
default LED symbols will be used instead.

Important

If you are having problems displaying the default LED symbols when running
the start_dv script, such as this error:

ERROR UnicodeEncodeError: 'ascii' codec can't encode character '\U0001f6d1' in position 2: ordinal not in range(128)

Then, you are might have your locale settings set incorrectly. Check
Display problems [https://simulrpi.readthedocs.io/en/latest/display_problems.html#non-ascii-characters-can-t-be-displayed] for more info about how to change them properly or
other solutions.

See also

	The setting gpio_channels

	Change slot LEDs sequence

Change paths to audio files

The setting sounds_directory [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L6] in the configuration file defines the directory
where all audio files (e.g. quotes) are saved.

Each audio object defined in the settings quotes, songs and
sound_effects have a filename property that you can modify. The
filename for each audio file is defined with respect to the directory
sounds_directory.

Example: filename for the closing sound

"sound_effects": [
 {
 "id": "closing_sound",
 "filename": "quote_nooooo.ogg",
 "audio_channel_id": 2,
 "mute": false
 },

Important

Don’t change the id property for songs and sound_effects objects
because it is used to uniquely identify them.

See also

	The setting quotes

	The setting songs

	The setting sound_effects

	The setting sounds_directory

Change slot LEDs sequence

The setting slot_leds [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L51] in the configuration file controls the blinking
pattern of the three slot LEDs in Darth Vader’s control box.

To change the default sequence, open the configuration file:

$ start_dv -e cfg

The slot_leds object defines the property sequence which can take a
string value (‘action’ or ‘calm’) or a custom sequence.

The custom sequence consists of a list of LED labels {‘top’, ‘middle’,
‘bottom’} arranged in a sequence specifying the order the slot LEDs should
turn ON/OFF.

Example: a slot_leds object with the calm sequence

 "slot_leds":{
 "delay_between_steps": 0.5,
 "time_per_step": 1,
 "sequence": "calm"
 },

Example: a slot_leds object with a custom sequence

 "slot_leds":{
 "delay_between_steps": 0.5,
 "time_per_step": 1,
 "sequence":[
 ["top", "bottom"],
 [],
 ["middle"],
 []
]
 },

This simple custom sequence will turn ON/OFF the slot LEDs in this order:

1. top + bottom LEDs turned ON
2. All LEDs turned OFF
3. middle LED turned ON
4. All LEDs turned OFF

Each step in the sequence will lasts for time_per_step seconds and there will
be a delay of delay_between_steps seconds between each step in the sequence.
And the whole sequence will keep on repeating until the script exits by
pressing ctrl + c.

See also

The setting slot_leds

Mute breathing sound

To mute Darth Vader’s breathing sound which plays almost as soon as the
start_dv script runs, edit the setting sound_effects [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L95] in the
configuration file which can be opened with:

$ start_dv -e cfg

Set the breathing_sound object’s mute to false.

Example: Mute the breathing sound

 "sound_effects": [
 {
 "id": "breathing_sound",
 "name": "Breathing sound",
 "filename": "darth_vader_breathing.ogg",
 "audio_channel_id": 0,
 "mute": false,
 "loops": -1
 }
]

See also

	The setting sound_effects

	Change channel volume

Run the script as quiet or verbose

To run the start_dv script as quiet or verbose, open the configuration
file with:

$ start_dv -e cfg

And set the setting quiet [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L2] or verbose [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L4] to true.

When running the start_dv script as verbose, the logging level is
set to DEBUG. Thus, all messages will be displayed and when there is an
exception, the traceback will be shown.

On the other hand, when running the start_dv script as quiet,
nothing will be printed to the terminal, not even error messages. However, you
will still be able to hear sounds and interact with the push buttons or
keyboard.

Important

if quiet and verbose are both activated at the same time, only
quiet will have an effect.

See also

	The setting quiet

	The setting verbose

 API Reference

API Reference

	darth_vader_rpi.start_dv

	Usage

	darth_vader_rpi.darth_vader

	darth_vader_rpi.ledutils

	darth_vader_rpi.utils

darth_vader_rpi.start_dv

Script to turn on LEDs and play sound effects on a Raspberry Pi (RPi).

The LEDs illuminate a Darth Vader action figure’s lightsaber and the three
slots in the chest control box. 3 push buttons control the following sounds
and LEDs:

	Some of his famous quotes

	The Imperial march theme song

	The lightsaber drawing, hum and retraction sounds

	The lightsaber illumination (3 LEDs)

His iconic breathing sound plays in the background indefinitely almost as soon
as the RPi is run with the script.

The script allows you also to edit the main config file [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json] to setup among other
things the RPi’s GPIO pins connected to LEDs and push buttons.

By default the RPi.GPIO [https://pypi.org/project/RPi.GPIO/] module is used, but if the simulation option (-s)
is used with the start_dv script, then the SimulRPi.GPIO [https://pypi.org/project/SimulRPi/] module will
be used instead which simulates RPi.GPIO [https://pypi.org/project/RPi.GPIO/] for those that don’t have an RPi to
test on.

Usage

Once the darth_vader_rpi package is installed, you should have access to
the start_dv script:

start_dv [-h] [--version] [-q] [-s] [-v] [-e {log,main}] [-a APP]

Run the script on the RPi with default values [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L1] for the GPIO channels and
other settings:

$ start_dv

Run the script on your computer using SimulRPi.GPIO [https://simulrpi.readthedocs.io/en/latest/api_reference.html#module-SimulRPi.GPIO] which simulates
RPi.GPIO:

$ start_dv -s

Edit the main config file with TextEdit (e.g. on macOS):

$ start_dv -e main -a TextEdit

Edit the logging config file with a default application (e.g. atom):

$ start_dv -e log

Notes

More information is available at:

	Darth-Vader-RPi GitHub [https://github.com/raul23/Darth-Vader-RPi]

	SimulRPi GitHub [https://github.com/raul23/SimulRPi]

Note

In darth_vader, ledutils, and start_dv, the default
value for GPIO is None [https://docs.python.org/3/library/constants.html#None] and will be eventually set to one of the
two modules (RPi.GPIO [https://pypi.org/project/RPi.GPIO/] or SimulRPi.GPIO [https://pypi.org/project/SimulRPi/]) depending on the user’s
settings.

RPi.GPIO [https://pypi.org/project/RPi.GPIO/] provides a class to control the GPIO pins on a Raspberry Pi.

If the simulation option (-s) is used with the start_dv script,
the SimulRPi.GPIO [https://pypi.org/project/SimulRPi/] module will be used instead.

	
start_dv.edit_config(cfg_type, app=None)[source]

	Edit a configuration file.

The user chooses what type of config file (cfg_type) to edit: ‘log’ for
the logging config file [https://github.com/raul23/Darth-Vader-RPi/blob/master/darth_vader_rpi/configs/default_logging_cfg.json] and ‘main’ for the main config file [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json].

The configuration file can be opened by a user-specified application (app)
or a default program associated with this type of file (when app is
None [https://docs.python.org/3/library/constants.html#None]).

	Parameters

	
	cfg_type (str [https://docs.python.org/3/library/stdtypes.html#str], {'log', 'main'}) – The type of configuration file we want to edit. ‘log’ refers to the
logging config file [https://github.com/raul23/Darth-Vader-RPi/blob/master/darth_vader_rpi/configs/default_logging_cfg.json], and ‘main’ to the main config file [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json] used to
setup the Darth-Vader-RPi project such as specifying the sound effects
or the GPIO channels.

	app (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of the application to use for opening the config file, e.g.
TextEdit (the default value is None [https://docs.python.org/3/library/constants.html#None] which implies that the
default application will be used to open the config file).

	Returns

	retcode – If there is a subprocess [https://docs.python.org/3/library/subprocess.html#subprocess.CalledProcessError]
-related error, the return code is non-zero. Otherwise, it is 0 if the
file can be successfully opened with an external program.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
start_dv.main()[source]

	Main entry-point to the script.

According to the user’s choice of action, the script might:

	activate a Darth Vader figurine (turn on LEDs and play sound effects)

	edit a configuration file

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Raised if an invalid configuration name is given to the
 command-line argument edit.

Notes

Only one action at a time can be performed.

	
start_dv.setup_argparser()[source]

	Setup the argument parser for the command-line script.

The important actions that can be performed with the script are:

	activate a Darth Vader figurine (turn on LEDs and play sound effects)

	edit a configuration file

	Returns

	parser – Argument parser.

	Return type

	argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

darth_vader_rpi.darth_vader

Module for activating a Darth Vader figurine by turning on LEDs on his suit
and playing sounds, all done via a Raspberry Pi (RPi).

The LEDs illuminate Darth Vader’s lightsaber and the three slots in the chest
control box. 3 push buttons control the following sounds and LEDs:

	Some of his famous quotes

	The Imperial march theme song

	The lightsaber drawing, hum and retraction sounds

	The lightsaber illumination (3 LEDs)

His iconic breathing sound plays in the background indefinitely almost as soon
as the RPi is run with the script.

	
class darth_vader.DarthVader(main_cfg)[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class for activating a Darth Vader figurine by turning on LEDs on his
suit and playing sounds, all done via a Raspberry Pi (RPi).

The main config file [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json] is used to setup the start_dv script, such
as the GPIO pins and the sound files.

	Parameters

	main_cfg (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary containing the configuration data to setup the
start_dv script, such as the GPIO pins and the sound files. See
main config file [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json] for a detailed look into its content.

	Variables

	th_slot_leds (start_dv.ExceptionThread) – Thread responsible for turning on the three slot LEDs in a precise
sequence.

Its target function is ledutils.turn_on_slot_leds().

	
activate()[source]

	Activate a Darth Vader figurine by turning on LEDs on his suit and
playing sounds, all done via an RPi.

While the method waits for a pressed button, you can exit by pressing
ctr + c.

	Returns

	retcode – If the method is run without any Exception [https://docs.python.org/3/library/exceptions.html#Exception], the return code is
0. Otherwise, it is 1.

Also, even if there is an Exception [https://docs.python.org/3/library/exceptions.html#Exception], the method will try to
clean up before exiting.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
cleanup(gpio_channels)[source]

	Clean up any resources such as threads and GPIO channels.

The cleanup consists in the following actions:

	turn off each LED

	stop the thread th_slot_leds

	stop each audio channel

	call RPi.GPIO.cleanup() which will return all GPIO channels back
to inputs with no pull up/down

	If in simulation mode, SimulRPi.GPIO.cleanup [https://simulrpi.readthedocs.io/en/latest/api_reference.html#SimulRPi.GPIO.cleanup] is called to
stop the threads among other things

	Parameters

	gpio_channels (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary mapping channel id (str [https://docs.python.org/3/library/stdtypes.html#str]) to channel attributes
(dict [https://docs.python.org/3/library/stdtypes.html#dict]). The channel attributes consist in the following:

	channel_number

	channel_name

	key

	led_symbols

Note

These channel attributes are those found in the setting
gpio_channels [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L11] from the main configuration file.

	
class darth_vader.ExceptionThread(verbose=False, *args, **kwargs)[source]

	Bases: threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread]

A subclass from threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread] that defines threads that can
catch errors if their target functions raise an exception.

	Parameters

	
	verbose (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, print the traceback when there is an exception. Otherwise,
print just a one-line error message, e.g. KeyError: 'test'

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – Positional arguments given to the thread’s target function.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Keyword arguments given to the thread’s target function.

	Variables

	exc (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – Represents the exception raised by the target function.

References

	stackoverflow [https://stackoverflow.com/a/51270466]

	
run()[source]

	Method representing the thread’s activity.

Overridden from the base class threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread]. This method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

It also saves and logs any error that the target function might
raise.

darth_vader_rpi.ledutils

Collection of LEDs-related utilities for the Darth-Vader-RPi project.

	
ledutils.turn_off_led(channel)[source]

	Turn off a LED from a given channel.

	Parameters

	channel (int [https://docs.python.org/3/library/functions.html#int]) – Channel number associated with a LED which will be turned off.

	
ledutils.turn_on_led(channel)[source]

	Turn on a LED from a given channel.

	Parameters

	channel (int [https://docs.python.org/3/library/functions.html#int]) – Channel number associated with a LED which will be turned on.

	
ledutils.turn_on_slot_leds(top_led, middle_led, bottom_led, leds_sequence='action', delay_between_steps=0.5, time_per_step=0.5)[source]

	A thread’s target function that turn on/off the three slot LEDs in a
precise sequence.

These three LEDs are associated with Darth Vader’s three slots located on
his chest control box. These LEDs are labeled as ‘top’, ‘middle’, and
‘bottom’, respectively.

The three LEDs are turned on according to a default or custom sequence
which repeats itself. The accepted values for leds_sequence are
‘action’ and ‘calm’ which represent Darth Vader’s physiological state
as a sequence of LEDs blinking in a particular order.

The user can also provide its own leds_sequence by using a list of LED
labels {‘top’, ‘midddle’, ‘bottom’} arranged in a sequence specifying
the order the slot LEDs should turn on/off, e.g. [['top', 'bottom'], [],
['middle'], []] will turn on/off the slot LEDs in this order:

1. top + bottom LEDs turned on
2. All LEDs turned off
3. middle LED turned on
4. All LEDs turned off

Each step in the sequence will last for time_per_step seconds.

There will be a delay of delay_between_steps seconds between
each step in the previous example.

The default sequences of slot LEDs were obtained from this
YouTube video [https://youtu.be/E2J_xl2MbGU?t=333].

	Parameters

	
	top_led (int [https://docs.python.org/3/library/functions.html#int]) – Channel number associated with the Top slot LED.

	middle_led (int [https://docs.python.org/3/library/functions.html#int]) – Channel number associated with the Middle slot LED.

	bottom_led (int [https://docs.python.org/3/library/functions.html#int]) – Channel number associated with the Bottom slot LED.

	leds_sequence (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Sequence of slot LEDs on Darth Vader’s chest box.

If leds_sequence is a string, then it takes on one of these values
which represent Darth Vader’s physiological state: {‘action’,
‘calm’}.

If leds_sequence is a list, then it must be a list of slot LED
labels {‘top’, ‘middle’, ‘bottom’} arranged in a sequence as to
specify the order the slot LEDs should turn on/off, e.g.
[['top', 'bottom'], [], ['middle'], []] will turn on/off the slot
LEDs in this order:

1. top + bottom LEDs turn on
2. All LEDs turn off
3. middle LED turn on
4. All LEDs turn off

	delay_between_steps (float [https://docs.python.org/3/library/functions.html#float], optional) – Delay in seconds between each step in the sequence. The default value
is 0.5 second.

	time_per_step (float [https://docs.python.org/3/library/functions.html#float], optional) – Time in seconds each step in the sequence will last. The default value
is 0.5 second.

Important

This also affects the time all LEDs will remain turned off if a
step in leds_sequence is an empty list.

Important

turn_on_slot_leds() should be run by a thread and eventually
stopped from the main program by setting its do_run attribute to
False to let the thread exit from its target function.

For example:

th = threading.Thread(target=turn_on_slot_leds,
 args=(leds_channels))
th.start()

Your other code ...

Time to stop thread
th.do_run = False
th.join()

darth_vader_rpi.utils

Collection of utilities for the Darth-Vader-RPi project.

	
class utils.SoundWrapper(sound_id, sound_name, sound_filepath, channel_id, mute=False)[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class that wraps around pygame.mixer.Channel [https://www.pygame.org/docs/ref/mixer.html#pygame.mixer.Channel] and
pygame.mixer.Sound [https://www.pygame.org/docs/ref/mixer.html#pygame.mixer.Sound].

The __init__ method takes care of automatically loading the sound
file. The sound file can then be played or stopped from the specified
channel channel_id with the play() or stop() method,
respectively.

	Parameters

	
	sound_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – A unique identifier.

	sound_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the sound file that will be displayed in the terminal.

	sound_filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the sound file.

	channel_id (int [https://docs.python.org/3/library/functions.html#int]) – Channel id associated with an instance of
pygame.mixer.Channel [https://www.pygame.org/docs/ref/mixer.html#pygame.mixer.Channel] for controlling playback. It must take an
int [https://docs.python.org/3/library/functions.html#int] value starting from 0.

	mute (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If set to True, the sound will not be played. The default value is
False.

Note

It is a wrapper with a very minimal interface to
pygame.mixer.Channel [https://www.pygame.org/docs/ref/mixer.html#pygame.mixer.Channel] where only two methods play() and
stop() are provided for the sake of the project.

	
play(loops=0)[source]

	Play a sound on the specified Channel channel_id.

	Parameters

	loops (int [https://docs.python.org/3/library/functions.html#int]) – Controls how many times the sample will be repeated after being
played the first time. The default value (zero) means the sound is
not repeated, and so is only played once. If loops is set to -1
the sound will loop indefinitely (though you can still call
stop() to stop it).

Reference: pygame.mixer.Sound.play() [https://www.pygame.org/docs/ref/mixer.html#pygame.mixer.Sound.play]

	
stop()[source]

	Stop playback on the specified channel channel_id.

	
utils.add_spaces_to_msg(msg, nb_spaces=60)[source]

	Add spaces at the end of a message.

	Parameters

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Message to be updated with spaces at the end.

	nb_spaces (int [https://docs.python.org/3/library/functions.html#int]) – Number of spaces to add at the end of the message. The default value is
60.

	Returns

	message – The updated message with spaces added at the end.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
utils.dumps_json(filepath, data, encoding='utf8', ensure_ascii=False, indent=None, sort_keys=False)[source]

	Write data to a JSON file.

The data is first serialized to a JSON formatted string and then saved
to disk.

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the JSON file where the data will be saved.

	data – Data to be written to the JSON file.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Encoding to be used for opening the JSON file in write mode (the
default value is ‘utf8’).

	ensure_ascii (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If ensure_ascii is False, then the return value can contain
non-ASCII characters if they appear in strings contained in data.
Otherwise, all such characters are escaped in JSON strings. See the
json.dumps docstring description (the default value is False).

	indent (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None], optional) – If indent is a non-negative integer, then JSON array elements and
object members will be pretty-printed with that indent level. An indent
level of 0 will only insert newlines. None [https://docs.python.org/3/library/constants.html#None] is the most compact
representation. See the json.dumps() docstring description. (the
default value is None [https://docs.python.org/3/library/constants.html#None]).

	sort_keys (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If sort_keys is True, then the output of dictionaries will be
sorted by key. See the json.dumps docstring description. (the
default value is False).

	Raises

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – Raised if any I/O related error occurs while writing the data to disk,
 e.g. the file doesn’t exist.

	
utils.get_cfg_dirpath()[source]

	Get the path to the directory containing the config files.

	Returns

	dirpath – The path to the directory containing the config files.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
utils.get_cfg_filepath(file_type)[source]

	Get the path to a config file used by the script start_dv.

file_type accepts the following values:

	default_log: refers to the default logging configuration file [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_logging_cfg.json] used
to setup the logging for all custom modules.

	default_main: refers to the default main configuration file [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json] used to
setup the script start_dv.

	log: refers to the user-defined logging configuration file which is
used to setup the logging for all custom modules.

	main: refers to the user-defined main configuration file used to
setup the script start_dv.

	Parameters

	file_type (str, {‘default_log’, ‘default_main’, ‘log’, ‘main’}) – The type of config file for which we want the path.

	Returns

	filepath – The path to the config file.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – Raised if the wrong type of config file is given to the function. Only
 {‘default_log’, ‘default_main’, ‘log’, ‘main’} are accepted for
 file_type.

	
utils.load_json(filepath, encoding='utf8')[source]

	Load JSON data from a file on disk.

If using Python version betwee 3.0 and 3.6 (inclusive), the data is
returned as collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]. Otherwise, the data is
returned as dict [https://docs.python.org/3/library/stdtypes.html#dict].

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the JSON file which will be read.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Encoding to be used for opening the JSON file in read mode (the default
value is ‘utf8’).

	Returns

	data – Data loaded from the JSON file.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict] or collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	Raises

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – Raised if any I/O related error occurs while reading the file, e.g. the
 file doesn’t exist.

References

Are dictionaries ordered in Python 3.6+? (stackoverflow) [https://stackoverflow.com/a/39980744]

	
utils.override_config_with_args(config, parser)[source]

	Override a config dictionary with arguments from the command-line.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary containing configuration options.

	parser (argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) – Argument parser.

	Returns

	retval – Contains two lists:

1. args_not_found: saves command-line arguments not found in the
config dictionary

2. config_opts_overridden: saves config options overridden by
command-line arguments as a three-tuple (option name, old value,
new value)

	Return type

	collections.namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]

	
utils.run_cmd(cmd)[source]

	Run a shell command with arguments.

The shell command is given as a string but the function will split it in
order to get a list having the name of the command and its arguments as
items.

	Parameters

	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) – Command to be executed, e.g.

open -a TextEdit text.txt

	Returns

	retcode – Returns code which is 0 if the command was successfully completed.
Otherwise, the return code is non-zero.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] – Raised if the command cmd is not recognized, e.g.
 $ TextEdit {filepath} since TextEdit is not an executable.

 Changelog

Changelog

Version 0.1.0a0

September 15, 2020

	Initial release

	Tested the start_dv script on various platforms and environments.

Here are the results:

	macOS:

	The start_dv -s command runs without errors on Python 3.7 and 3.8

	On Python 3.5 and 3.6, I had to set my locale settings to
LANG="en_US.UTF-8" to make the start_dv -s command work. Thus,
it was not an error with the script but with how my system environment
was setup. Python 3.5 and 3.6 don’t assume UTF-8 based local
settings like the other more recent Python versions.

	Raspberry Pi (Python 3.5):

	Running the start_dv command without errors.

	Running the start_dv -s command without errors.

	SSH from macOS to RPi (Python 3.5):

	Running the start_dv command without errors.

	Running the start_dv -s command produces a warning about pynput
not being able to be imported (as expected) but the rest of the code that
doesn’t depend on keyboard keys being detected works, i.e. blinking of
LED symbols in the terminal.

Note

For more detailed information about these tests, check
Test results for start_dv [https://github.com/raul23/Darth-Vader-RPi/blob/master/docs/test_results.rst#darth-vader-rpi-v0-1-0a0]

 License: GPL3

License: GPL3

GNU GENERAL PUBLIC LICENSE
 Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The GNU General Public License is a free, copyleft license for
software and other kinds of works.

 The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

 To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

 Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

 For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

 Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

 Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

 The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

 The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical
 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

 If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

 The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

 Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

 13. Use with the GNU Affero General Public License.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

 You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.

 The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

 Python Module Index

 Python Module Index

 d |
 l |
 s |
 u

 		 	

 		
 d	

 	
 	
 darth_vader	

 		 	

 		
 l	

 	
 	
 ledutils	

 		 	

 		
 s	

 	
 	
 start_dv	

 		 	

 		
 u	

 	
 	
 utils	

 Index

Index

 A
 | C
 | D
 | E
 | G
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U

A

 	
 	activate() (darth_vader.DarthVader method)

 	
 	add_spaces_to_msg() (in module utils)

C

 	
 	cleanup() (darth_vader.DarthVader method)

D

 	
 	
 darth_vader

 	module

 	
 	DarthVader (class in darth_vader)

 	dumps_json() (in module utils)

E

 	
 	edit_config() (in module start_dv)

 	
 	ExceptionThread (class in darth_vader)

G

 	
 	get_cfg_dirpath() (in module utils)

 	
 	get_cfg_filepath() (in module utils)

L

 	
 	
 ledutils

 	module

 	
 	load_json() (in module utils)

M

 	
 	main() (in module start_dv)

 	
 module

 	darth_vader

 	ledutils

 	start_dv

 	utils

O

 	
 	override_config_with_args() (in module utils)

P

 	
 	play() (utils.SoundWrapper method)

R

 	
 	run() (darth_vader.ExceptionThread method)

 	
 	run_cmd() (in module utils)

S

 	
 	setup_argparser() (in module start_dv)

 	SoundWrapper (class in utils)

 	
 	
 start_dv

 	module

 	stop() (utils.SoundWrapper method)

T

 	
 	turn_off_led() (in module ledutils)

 	
 	turn_on_led() (in module ledutils)

 	turn_on_slot_leds() (in module ledutils)

U

 	
 	
 utils

 	module

 darth_vader

 Source code for darth_vader

"""Module for activating a Darth Vader figurine by turning on LEDs on his suit
and playing sounds, all done via a Raspberry Pi (RPi).

The LEDs illuminate Darth Vader's lightsaber and the three slots in the chest
control box. 3 push buttons control the following sounds and LEDs:

1. Some of his famous quotes
2. The Imperial march theme song
3. The lightsaber drawing, hum and retraction sounds
4. The lightsaber illumination (3 LEDs)

His iconic breathing sound plays in the background indefinitely almost as soon
as the RPi is run with the script.

.. URLs
.. default cfg files
.. _default logging configuration file: https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_logging_cfg.json
.. _default main configuration file: https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json
.. _default values: https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L1
.. _logging config file: https://github.com/raul23/Darth-Vader-RPi/blob/master/darth_vader_rpi/configs/default_logging_cfg.json
.. _main config file: https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json
.. _gpio_channels: https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L11

.. external links
.. _Are dictionaries ordered in Python 3.6+? (stackoverflow): https://stackoverflow.com/a/39980744
.. _Darth-Vader-RPi GitHub: https://github.com/raul23/Darth-Vader-RPi
.. _RPi.GPIO: https://pypi.org/project/RPi.GPIO/
.. _SimulRPi GitHub: https://github.com/raul23/SimulRPi
.. _SimulRPi.GPIO: https://pypi.org/project/SimulRPi/
.. _YouTube video: https://youtu.be/E2J_xl2MbGU?t=333

.. internal links
.. _installed: README_docs.html#installation-instructions-label

"""
import logging
import os
import threading
import time
from logging import NullHandler

os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = "hide"
import pygame

from darth_vader_rpi.utils import add_spaces_to_msg, SoundWrapper
from darth_vader_rpi.ledutils import turn_on_led, turn_off_led, turn_on_slot_leds

try:
 import RPi.GPIO as GPIO
except ImportError:
 import SimulRPi.GPIO as GPIO

logger = logging.getLogger(__name__)
logger.addHandler(NullHandler())

[docs]class ExceptionThread(threading.Thread):
 """A subclass from :class:`threading.Thread` that defines threads that can
 catch errors if their target functions raise an exception.

 Parameters

 verbose : bool, optional
 If `True`, print the traceback when there is an exception. Otherwise,
 print just a one-line error message, e.g. ``KeyError: 'test'``
 args : tuple, optional
 Positional arguments given to the thread's target function.
 kwargs : dict, optional
 Keyword arguments given to the thread's target function.

 Attributes

 exc: :class:`Exception`
 Represents the exception raised by the target function.

 References

 * `stackoverflow <https://stackoverflow.com/a/51270466>`__

 """

 def __init__(self, verbose=False, *args, **kwargs):
 threading.Thread.__init__(self, *args, **kwargs)
 self.verbose = verbose
 self.exc = None

[docs] def run(self):
 """Method representing the thread’s activity.

 Overridden from the base class :class:`threading.Thread`. This method
 invokes the callable object passed to the object’s constructor as the
 target argument, if any, with sequential and keyword arguments taken
 from the args and kwargs arguments, respectively.

 **It also saves and logs any error that the target function might
 raise.**

 """
 try:
 self._target(*self._args, **self._kwargs)
 except Exception as e:
 self.exc = e
 if self.verbose:
 logger.exception(add_spaces_to_msg("Error: {}".format(e)))
 else:
 # TODO: add next line in a utility function
 err_msg = "{}: {}".format(str(e.__class__).split("'")[1], e)
 logger.error(add_spaces_to_msg(err_msg))

[docs]class DarthVader:
 """Class for activating a Darth Vader figurine by turning on LEDs on his
 suit and playing sounds, all done via a Raspberry Pi (RPi).

 The `main config file`_ is used to setup the :mod:`start_dv` script, such
 as the GPIO pins and the sound files.

 Parameters

 main_cfg : dict
 Dictionary containing the configuration data to setup the
 :mod:`start_dv` script, such as the GPIO pins and the sound files. See
 `main config file`_ for a detailed look into its content.

 Attributes

 th_slot_leds : start_dv.ExceptionThread
 Thread responsible for turning on the three slot LEDs in a precise
 sequence.

 Its target function is :meth:`ledutils.turn_on_slot_leds`.

 """

 def __init__(self, main_cfg):
 self.main_cfg = main_cfg
 self.th_slot_leds = None

[docs] def activate(self):
 """Activate a Darth Vader figurine by turning on LEDs on his suit and
 playing sounds, all done via an RPi.

 While the method waits for a pressed button, you can exit by pressing
 ``ctr`` + ``c``.

 Returns

 retcode: int
 If the method is run without any :exc:`Exception`, the return code is
 0. Otherwise, it is 1.

 Also, even if there is an :exc:`Exception`, the method will try to
 clean up before exiting.

 """
 retcode = 0
 gpio_channels = {}
 loaded_sounds = {}
 try:
 logger.debug("pygame mixer initialization")
 pygame.mixer.init()
 logger.debug("RPi initialization")
 logger.debug("")
 # Set the numbering system used to identify the I/O pins on an RPi
 modes = {'BOARD': GPIO.BOARD, 'BCM': GPIO.BCM}
 GPIO.setmode(modes[self.main_cfg['mode'].upper()])
 GPIO.setwarnings(False)
 # Setup LEDs and buttons
 for gpio_ch in self.main_cfg['gpio_channels']:
 # TODO: IMPORTANT add channel_type in main_cfg so you don't
 # have to check '_led'
 if gpio_ch['channel_id'].endswith("_led"):
 # LEDs
 GPIO.setup(gpio_ch['channel_number'], GPIO.OUT)
 else:
 # Buttons
 GPIO.setup(gpio_ch['channel_number'], GPIO.IN,
 pull_up_down=GPIO.PUD_UP)
 gpio_channels[gpio_ch['channel_id']] = {
 'channel_number': gpio_ch['channel_number'],
 'channel_name': gpio_ch['channel_name'],
 'key': gpio_ch.get('key'),
 'led_symbol': gpio_ch.get('led_symbols')
 }

 ### Sound
 # Create separate channel
 # Ref.: stackoverflow.com/a/59742418
 audio_channels = self.main_cfg['audio_channels']
 for ch_dict in audio_channels:
 channel = pygame.mixer.Channel(ch_dict['channel_id'])
 channel.set_volume(ch_dict['volume'])

 sounds_dir = self.main_cfg['sounds_directory']
 # Load sounds from cfg
 logger.info('Loading sounds...')
 logger.info("")
 for sound_type in ['quotes', 'songs', 'sound_effects']:
 logger.debug('Loading {}'.format(sound_type.replace("_", " ")))
 for sound in self.main_cfg[sound_type]:
 sound_id = sound['id']
 sound_name = sound['name']
 filepath = os.path.join(sounds_dir, sound['filename'])
 logger.debug('Loading "{}": {}'.format(sound_name, filepath))
 sw = SoundWrapper(
 sound_id=sound_id,
 sound_name=sound_name,
 sound_filepath=filepath,
 channel_id=sound['audio_channel_id'],
 mute=sound.get('mute', False))
 if sound_type == "quotes":
 loaded_sounds.setdefault("quotes", {})
 loaded_sounds['quotes'].setdefault(sound_id, sw)
 else:
 loaded_sounds.setdefault(sound_id, sw)
 if sw.sound_id == 'breathing_sound' and not sw.mute:
 loops = sound.get('loops', 0)
 loaded_sounds[sound_id].play(loops)
 logger.debug("")
 quotes = list(loaded_sounds['quotes'].values())

 self.th_slot_leds = ExceptionThread(
 name="thread_slot_leds",
 target=turn_on_slot_leds,
 verbose=self.main_cfg['verbose'],
 kwargs=dict(
 top_led=gpio_channels['top_led']['channel_number'],
 middle_led=gpio_channels['middle_led']['channel_number'],
 bottom_led=gpio_channels['bottom_led']['channel_number'],
 leds_sequence=self.main_cfg['slot_leds']['sequence'],
 delay_between_steps=self.main_cfg['slot_leds']['delay_between_steps'],
 time_per_step=self.main_cfg['slot_leds']['time_per_step']))
 """
 args=(gpio_channels['top_led']['channel_number'],
 gpio_channels['middle_led']['channel_number'],
 gpio_channels['bottom_led']['channel_number'],
 self.main_cfg['slot_leds']['sequence'],
 self.main_cfg['slot_leds']['delay_between_steps'],
 self.main_cfg['slot_leds']['time_per_step']))
 """
 self.th_slot_leds.start()
 logger.info("")
 logger.info(add_spaces_to_msg("Press buttons"))
 pressed_lightsaber = False
 quote_idx = 0

 while True:
 if not GPIO.input(gpio_channels['lightsaber_button']['channel_number']):
 # logger.debug("\n\nButton {} pressed...".format(
 # lightsaber_button))
 if pressed_lightsaber:
 pressed_lightsaber = False
 loaded_sounds['lightsaber_retraction_sound'].play()
 time.sleep(0.1)
 turn_off_led(22)
 else:
 pressed_lightsaber = True
 loaded_sounds['lightsaber_drawing_sound'].play()
 loaded_sounds['lightsaber_hum_sound'].play(-1)
 time.sleep(0.1)
 turn_on_led(gpio_channels['lightsaber_led']['channel_number'])
 time.sleep(0.2)
 elif not GPIO.input(gpio_channels['song_button']['channel_number']):
 # logger.debug("\n\nButton {} pressed...".format(song_button))
 loaded_sounds['imperial_march_song'].play()
 time.sleep(0.2)
 elif not GPIO.input(gpio_channels['quotes_button']['channel_number']):
 """
 logger.debug("\n\nButton {} pressed...".format(
 gpio_channels['quotes_button']['channel_name']))
 """
 quote = quotes[quote_idx % len(quotes)]
 quote_idx += 1
 quote.play()
 time.sleep(0.2)
 elif not self.th_slot_leds.is_alive():
 retcode = 1
 logger.info(add_spaces_to_msg("Exiting..."))
 break
 except Exception as e:
 retcode = 1
 if self.main_cfg['verbose']:
 logger.exception(add_spaces_to_msg("Error: {}".format(e)))
 else:
 # logger.error(add_spaces_to_msg(e.__repr__()))
 # TODO: add next line in a utility function
 err_msg = "{}: {}".format(str(e.__class__).split("'")[1], e)
 logger.error(add_spaces_to_msg(err_msg))
 except KeyboardInterrupt:
 logger.info(add_spaces_to_msg("Exiting..."))
 closing_sound = loaded_sounds.get('closing_sound')
 if closing_sound and not closing_sound.mute:
 closing_sound.play()
 time.sleep(1)
 finally:
 self.cleanup(gpio_channels)
 return retcode

[docs] def cleanup(self, gpio_channels):
 """Clean up any resources such as threads and GPIO channels.

 The cleanup consists in the following actions:

 * turn off each LED
 * stop the thread ``th_slot_leds``
 * stop each audio channel
 * call ``RPi.GPIO.cleanup()`` which will return all GPIO channels back
 to inputs with no pull up/down

 * If in simulation mode, :obj:`SimulRPi.GPIO.cleanup` is called to
 stop the threads among other things

 Parameters

 gpio_channels : dict
 Dictionary mapping channel id (:obj:`str`) to channel attributes
 (:obj:`dict`). The channel attributes consist in the following:

 * ``channel_number``
 * ``channel_name``
 * ``key``
 * ``led_symbols``

 .. note::

 These channel attributes are those found in the setting
 `gpio_channels`_ from the main configuration file.

 """
 if hasattr(GPIO, "setprinting"):
 GPIO.setprinting(False)
 time.sleep(0.1)
 if gpio_channels:
 for channel_id, channel_info in gpio_channels.items():
 if channel_id.endswith("_led"):
 turn_off_led(channel_info['channel_number'])
 logger.info(add_spaces_to_msg("Cleanup..."))
 if self.th_slot_leds:
 self.th_slot_leds.do_run = False
 self.th_slot_leds.join()
 logger.debug(add_spaces_to_msg("Thread stopped: {}".format(
 self.th_slot_leds.name)))
 for ch in self.main_cfg['audio_channels']:
 pygame.mixer.Channel(ch['channel_id']).stop()
 GPIO.cleanup()

 Overview: module code

 All modules for which code is available

	darth_vader

	ledutils

	start_dv

	utils

 ledutils

 Source code for ledutils

"""Collection of LEDs-related utilities for the *Darth-Vader-RPi* project.
"""
import logging
import threading
import time
from logging import NullHandler

from darth_vader_rpi.utils import add_spaces_to_msg
from darth_vader_rpi.slot_leds_sequences import ACTION, CALM

try:
 import RPi.GPIO as GPIO
except ImportError:
 import SimulRPi.GPIO as GPIO

logger = logging.getLogger(__name__)
logger.addHandler(NullHandler())

_DEFAULT_SEQ = {'action': ACTION, 'calm': CALM}

[docs]def turn_off_led(channel):
 """Turn off a LED from a given channel.

 Parameters

 channel : int
 Channel number associated with a LED which will be turned off.

 """
 # logger.debug("LED {} off".format(led))
 GPIO.output(channel, GPIO.LOW)

[docs]def turn_on_led(channel):
 """Turn on a LED from a given channel.

 Parameters

 channel : int
 Channel number associated with a LED which will be turned on.

 """
 # logger.debug("LED {} on".format(led))
 GPIO.output(channel, GPIO.HIGH)

[docs]def turn_on_slot_leds(top_led, middle_led, bottom_led, leds_sequence="action",
 delay_between_steps=0.5, time_per_step=0.5):
 """A thread's **target function** that turn on/off the three slot LEDs in a
 precise sequence.

 These three LEDs are associated with Darth Vader's three slots located on
 his chest control box. These LEDs are labeled as '`top`', '`middle`', and
 '`bottom`', respectively.

 The three LEDs are turned on according to a default or custom sequence
 which repeats itself. The accepted values for ``leds_sequence`` are
 '`action`' and '`calm`' which represent Darth Vader's physiological state
 as a sequence of LEDs blinking in a particular order.

 The user can also provide its own ``leds_sequence`` by using a list of LED
 labels {'`top`', '`midddle`', '`bottom`'} arranged in a sequence specifying
 the order the slot LEDs should turn on/off, e.g. ``[['top', 'bottom'], [],
 ['middle'], []]`` will turn on/off the slot LEDs in this order::

 1. top + bottom LEDs turned on
 2. All LEDs turned off
 3. middle LED turned on
 4. All LEDs turned off

 Each step in the sequence will last for ``time_per_step`` seconds.

 There will be a delay of ``delay_between_steps`` seconds between
 each step in the previous example.

 The default sequences of slot LEDs were obtained from this
 `YouTube video`_.

 Parameters

 top_led : int
 Channel number associated with the `Top` slot LED.
 middle_led : int
 Channel number associated with the `Middle` slot LED.
 bottom_led : int
 Channel number associated with the `Bottom` slot LED.
 leds_sequence : str or list, optional
 Sequence of slot LEDs on Darth Vader's chest box.

 If ``leds_sequence`` is a string, then it takes on one of these values
 which represent Darth Vader's physiological state: {'*action*',
 '*calm*'}.

 If ``leds_sequence`` is a list, then it must be a list of slot LED
 labels {'`top`', '`middle`', '`bottom`'} arranged in a sequence as to
 specify the order the slot LEDs should turn on/off, e.g.
 ``[['top', 'bottom'], [], ['middle'], []]`` will turn on/off the slot
 LEDs in this order::

 1. top + bottom LEDs turn on
 2. All LEDs turn off
 3. middle LED turn on
 4. All LEDs turn off

 delay_between_steps : float, optional
 Delay in seconds between each step in the sequence. The default value
 is 0.5 second.
 time_per_step : float, optional
 Time in seconds each step in the sequence will last. The default value
 is 0.5 second.

 .. important::

 This also affects the time all LEDs will remain turned off if a
 step in ``leds_sequence`` is an empty list.

 .. important::

 :meth:`turn_on_slot_leds` should be run by a thread and eventually
 stopped from the main program by setting its ``do_run`` attribute to
 `False` to let the thread exit from its target function.

 For example:

 .. code-block:: python

 th = threading.Thread(target=turn_on_slot_leds,
 args=(leds_channels))
 th.start()

 # Your other code ...

 # Time to stop thread
 th.do_run = False
 th.join()

 """
 # LED labels to Channel numbers Mapping (LCM)
 lcm = dict((('top', top_led), ('middle', middle_led), ('bottom', bottom_led)))
 if isinstance(leds_sequence, str):
 leds_sequence = leds_sequence.lower()
 assert leds_sequence in _DEFAULT_SEQ.keys(), \
 "Wrong type of leds_sequence: '{}' (choose from {})".format(
 leds_sequence, ", ".join(_DEFAULT_SEQ.keys()))
 leds_sequence = _DEFAULT_SEQ[leds_sequence]
 else:
 assert isinstance(leds_sequence, list), \
 "leds_sequence should be a string ({}) or a list: '{}'".format(
 ", ".join(_DEFAULT_SEQ.keys()), leds_sequence)
 th = threading.currentThread()
 subseq_idx = 0
 # TODO: use SimulRPi API to get LEDs states
 leds_states = dict(zip(lcm.keys(), [GPIO.LOW]*len(lcm)))
 while getattr(th, "do_run", True):
 leds_subsequence = leds_sequence[subseq_idx % len(leds_sequence)]
 subseq_idx += 1
 for channel_label, channel in lcm.items():
 cur_state = leds_states[channel_label]
 if channel_label in leds_subsequence:
 if cur_state != GPIO.HIGH:
 leds_states[channel_label] = GPIO.HIGH
 turn_on_led(channel)
 else:
 if cur_state != GPIO.LOW:
 leds_states[channel_label] = GPIO.LOW
 turn_off_led(channel)
 time.sleep(time_per_step+delay_between_steps)
 logger.debug(add_spaces_to_msg("Stopping thread: {}".format(th.name)))

 start_dv

 Source code for start_dv

#!/usr/bin/env python
"""Script to turn on LEDs and play sound effects on a Raspberry Pi (RPi).

The LEDs illuminate a Darth Vader action figure's lightsaber and the three
slots in the chest control box. 3 push buttons control the following sounds
and LEDs:

1. Some of his famous quotes
2. The Imperial march theme song
3. The lightsaber drawing, hum and retraction sounds
4. The lightsaber illumination (3 LEDs)

His iconic breathing sound plays in the background indefinitely almost as soon
as the RPi is run with the script.

The script allows you also to edit the `main config file`_ to setup among other
things the RPi's GPIO pins connected to LEDs and push buttons.

By default the `RPi.GPIO`_ module is used, but if the simulation option (`-s`)
is used with the :mod:`start_dv` script, then the `SimulRPi.GPIO`_ module will
be used instead which simulates `RPi.GPIO`_ for those that don't have an RPi to
test on.

.. _usage-start-dv-label:

Usage

.. highlight:: console

Once the ``darth_vader_rpi`` package is `installed`_, you should have access to
the :mod:`start_dv` script:

 ``start_dv [-h] [--version] [-q] [-s] [-v] [-e {log,main}] [-a APP]``

Run the script on the **RPi** with `default values`_ for the GPIO channels and
other settings::

 $ start_dv

Run the script on your **computer** using :mod:`SimulRPi.GPIO` which simulates
``RPi.GPIO``::

 $ start_dv -s

Edit the main config file with *TextEdit* (e.g. on macOS)::

 $ start_dv -e main -a TextEdit

Edit the logging config file with a default application (e.g. atom)::

 $ start_dv -e log

.. highlight:: python

Notes

More information is available at:

- `Darth-Vader-RPi GitHub`_
- `SimulRPi GitHub`_

.. note::

 In :mod:`darth_vader`, :mod:`ledutils`, and :mod:`start_dv`, the default
 value for ``GPIO`` is :obj:`None` and will be eventually set to one of the
 two modules (`RPi.GPIO`_ or `SimulRPi.GPIO`_) depending on the user's
 settings.

 `RPi.GPIO`_ provides a class to control the GPIO pins on a Raspberry Pi.

 If the `simulation` option (`-s`) is used with the :mod:`start_dv` script,
 the `SimulRPi.GPIO`_ module will be used instead.

"""
import argparse
import logging.config
import os
import platform
import shutil
from collections import namedtuple
from logging import NullHandler

from dv_sounds.utils import get_dirpath, get_filepath
from darth_vader_rpi import (__name__ as package_name,
 __path__ as package_path,
 __version__ as package_version)
from darth_vader_rpi.darth_vader import DarthVader
from darth_vader_rpi.utils import (add_spaces_to_msg, dumps_json,
 get_cfg_filepath, load_json,
 override_config_with_args, run_cmd)

logger = logging.getLogger(__name__)
logger.addHandler(NullHandler())

GPIO = None

_LOG_CFG = "log_cfg"
_MAIN_CFG = "cfg"
"""TODO"""

_TEST_LOGGING_CFG = None
"""Dictionary containing the logging configuration data.

The default value is :obj:`None` and will be set when performing the tests from
:obj:`darth_vader_rpi.tests`).
"""

_TEST_MAIN_CFG = None
"""Dictionary containing the main configuration data.

The default value is obj:`None` and will be set when performing the tests from
:obj:`darth_vader_rpi.tests`).

"""

def _check_user_cfg_dict(cfg_type, user_cfg_dict):
 """TODO

 Parameters

 cfg_type
 user_cfg_dict

 """
 retval = namedtuple("retval", "keys_not_found user_cfg_filepath")
 retval.keys_not_found = []
 user_cfg_filepath = get_cfg_filepath(cfg_type)
 retval.user_cfg_filepath = user_cfg_filepath
 default_cfg_filepath = get_cfg_filepath("default_{}".format(cfg_type))
 default_cfg_dict = load_json(default_cfg_filepath)
 diff_keys = None
 for dicts_ in [(default_cfg_dict, user_cfg_dict),
 (default_cfg_dict.get('loggers'), user_cfg_dict.get('loggers'))]:
 if not dicts_[0]:
 break
 default_keys = set(dicts_[0].keys())
 user_keys = set(dicts_[1].keys())
 diff_keys = default_keys - user_keys
 for k in diff_keys:
 retval.keys_not_found.append(k)
 dicts_[1].setdefault(k, dicts_[0][k])
 if diff_keys:
 dumps_json(filepath=user_cfg_filepath, data=user_cfg_dict, indent=2)
 return retval

def _check_sound_files(main_cfg):
 """TODO

 Parameters

 main_cfg

 Raises

 FileNotFoundError

 """
 logger.debug("Checking sound files...")
 default_directory = False
 if main_cfg['sounds_directory']:
 logger.debug("sounds_directory: {}".format(
 main_cfg['sounds_directory']))
 else:
 default_directory = True
 logger.info("No sounds_directory defined in config file")
 dirpath = get_dirpath()
 logger.info("Setting sounds_directory with default location: "
 "{}".format(dirpath))
 orig_main_cfg = _get_cfg_dict('main')
 orig_main_cfg['sounds_directory'] = dirpath
 main_cfg['sounds_directory'] = dirpath
 dumps_json(get_cfg_filepath('main'), orig_main_cfg, indent=2)
 sound_types = ['quotes', 'songs', 'sound_effects']
 for sound_type in sound_types:
 for sound in main_cfg[sound_type]:
 filename = sound['filename']
 if default_directory:
 filepath = get_filepath(filename)
 else:
 filepath = os.path.join(main_cfg['sounds_directory'], filename)
 if os.path.exists(filepath):
 logger.debug("File checked: {}".format(filepath))
 else:
 raise FileNotFoundError("No such file: {}".format(filepath))

def _get_cfg_dict(cfg_type):
 """TODO

 Parameters

 cfg_type

 Returns

 """
 test_cfg = {'main': _TEST_MAIN_CFG,
 'log': _TEST_LOGGING_CFG}
 cfg_dict = test_cfg[cfg_type]
 if cfg_dict is None:
 cfg_filepath = get_cfg_filepath(cfg_type)
 try:
 cfg_dict = load_json(cfg_filepath)
 except FileNotFoundError:
 # TODO: IMPORTANT add logging
 # Config file not found
 # Copy it from the default one
 # TODO: IMPORTANT destination with default?
 default_cfg_type = "default_{}".format(cfg_type)
 src = get_cfg_filepath(default_cfg_type)
 shutil.copy(src, cfg_filepath)
 cfg_dict = load_json(cfg_filepath)
 if 'sounds_directory' in cfg_dict:
 # Only for main config file
 cfg_dict['sounds_directory'] = os.path.expanduser(
 cfg_dict['sounds_directory'])
 return cfg_dict

[docs]def edit_config(cfg_type, app=None):
 """Edit a configuration file.

 The user chooses what type of config file (`cfg_type`) to edit: 'log' for
 the `logging config file`_ and 'main' for the `main config file`_.

 The configuration file can be opened by a user-specified application (`app`)
 or a default program associated with this type of file (when `app` is
 :obj:`None`).

 Parameters

 cfg_type : str, {'log', 'main'}
 The type of configuration file we want to edit. 'log' refers to the
 `logging config file`_, and 'main' to the `main config file`_ used to
 setup the Darth-Vader-RPi project such as specifying the sound effects
 or the GPIO channels.
 app : str, optional
 Name of the application to use for opening the config file, e.g.
 `TextEdit` (the default value is :obj:`None` which implies that the
 default application will be used to open the config file).

 Returns

 retcode : int
 If there is a `subprocess
 <https://docs.python.org/3/library/subprocess.html#subprocess.CalledProcessError>`_
 -related error, the return code is non-zero. Otherwise, it is 0 if the
 file can be successfully opened with an external program.

 """
 # Get path to user-defined config file
 filepath = get_cfg_filepath(cfg_type)
 # Command to open the config file with the default application in the
 # OS or the user-specified app, e.g. `open filepath` in macOS opens the
 # file with the default app (e.g. atom)
 default_cmd_dict = {'Darwin': 'open {filepath}',
 'Linux': 'xdg-open {filepath}',
 'Windows': 'cmd /c start "" "{filepath}"'}
 # NOTE: check https://bit.ly/31htaOT (pymotw) for output from
 # platform.system on three OSes
 default_cmd = default_cmd_dict.get(platform.system())
 # NOTES:
 # - `app is None` implies that the default app will be used
 # - Otherwise, the user-specified app will be used
 cmd = default_cmd if app is None else app + " " + filepath
 retcode = 1
 result = None
 try:
 # IMPORTANT: if the user provided the name of an app, it will be used as
 # a command along with the file path, e.g. ``$ atom {filepath}``.
 # However, this case might not work if the user provided an app name
 # that doesn't refer to an executable, e.g. ``$ TextEdit {filepath}``
 # won't work. The failed case is further processed in the except block.
 result = run_cmd(cmd.format(filepath=filepath))
 retcode = result.returncode
 except FileNotFoundError:
 # This error happens if the name of the app can't be called as an
 # executable in the terminal
 # e.g. `TextEdit` can't be run in the terminal but `atom` can since the
 # latter refers to an executable.
 # To open `TextEdit` from the terminal, the command ``open -a TextEdit``
 # must be used on macOS.
 # TODO: IMPORTANT add the open commands for the other OSes
 specific_cmd_dict = {'Darwin': 'open -a {app}'.format(app=app)}
 # Get the command to open the file with the user-specified app
 cmd = specific_cmd_dict.get(platform.system(), app) + " " + filepath
 # TODO: explain DEVNULL, suppress stderr since we will display the error
 # TODO: IMPORTANT you might get a FileNotFoundError again?
 result = run_cmd(cmd) # stderr=subprocess.DEVNULL)
 retcode = result.returncode
 if retcode == 0:
 logger.info("Opening the {} configuration file ...".format(cfg_type))
 else:
 if result:
 err = result.stderr.decode().strip()
 logger.error(err)
 return retcode

[docs]def setup_argparser():
 """Setup the argument parser for the command-line script.

 The important actions that can be performed with the script are:

 - activate a Darth Vader figurine (turn on LEDs and play sound effects)
 - edit a configuration file

 Returns

 parser : argparse.ArgumentParser
 Argument parser.

 """
 # Help message that is used in various arguments
 common_help = '''Provide '{}' for the logging config file or '{}' for the
 main config file.'''.format(_LOG_CFG, _MAIN_CFG)
 # Setup the parser
 parser = argparse.ArgumentParser(
 # usage="%(prog)s [OPTIONS]",
 # prog=os.path.basename(__file__),
 description='''\
Activate Darth Vader by turning on LEDs on his suit and lightsaber, and by
pressing buttons to produce sound effects.\n
IMPORTANT: these are only some of the most important options. Open the main
config file to have access to the complete list of options, i.e.
%(prog)s -e {}'''.format(_MAIN_CFG),
 # formatter_class=argparse.RawDescriptionHelpFormatter)
 formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 # ===============
 # General options
 # ===============
 parser.add_argument("--version", action='version',
 version='%(prog)s {}'.format(package_version))
 parser.add_argument("-q", "--quiet", action="store_true",
 help="Enable quiet mode, i.e. nothing will be printed.")
 parser.add_argument("-s", "--simulation", action="store_true",
 help="Enable simulation mode, i.e. SimulRPi.GPIO will "
 "be used for simulating RPi.GPIO.")
 parser.add_argument("-v", "--verbose", action="store_true",
 help="Print various debugging information, e.g. print "
 "traceback when there is an exception.")
 # Group arguments that are closely related
 # ===========
 # Edit config
 # ===========
 edit_group = parser.add_argument_group('Edit a configuration file')
 edit_group.add_argument(
 "-e", "--edit", choices=[_LOG_CFG, _MAIN_CFG],
 help="Edit a configuration file. {}".format(common_help))
 edit_group.add_argument(
 "-a", "--app-name", dest="app",
 help='''Name of the application to use for editing the file. If no
 name is given, then the default application for opening this type of
 file will be used.''')
 # =================
 # Reset/Undo config
 # =================
 """
 reset_group = parser.add_argument_group(
 'Reset or undo a configuration file')
 reset_group.add_argument(
 "-r", "--reset", choices=[_LOG_CFG, _MAIN_CFG],
 help='''Reset a configuration file with factory default values.
 {}'''.format(common_help))
 reset_group.add_argument(
 "-u", "--undo", choices=[_LOG_CFG, _MAIN_CFG],
 help='''Undo the LAST RESET. Thus, the config file will be restored
 to what it was before the LAST reset. {}'''.format(common_help))

 """
 return parser

[docs]def main():
 """Main entry-point to the script.

 According to the user's choice of action, the script might:

 - activate a Darth Vader figurine (turn on LEDs and play sound effects)
 - edit a configuration file

 Raises

 ValueError
 Raised if an invalid configuration name is given to the
 command-line argument `edit`.

 Notes

 Only one action at a time can be performed.

 """
 global logger, GPIO
 # =====================
 # Default logging setup
 # =====================
 # Setup the default logger (whose name is __main__ since this file is run
 # as a script) which will be used for printing to the console before all
 # loggers defined in the JSON file will be configured. The printing with
 # this default logger will only be done in the cases that the user allows
 # it, e.g. the verbose option is enabled.
 # IMPORTANT: the config options need to be read before using any logger
 # TODO: default logger not used
 logger.setLevel(logging.INFO)
 ch = logging.StreamHandler()
 ch.setLevel(logging.INFO)
 formatter = logging.Formatter("%(levelname)-8s %(message)s")
 ch.setFormatter(formatter)
 logger.addHandler(ch)

 # ============================
 # Parse command-line arguments
 # ============================
 parser = setup_argparser()
 args = parser.parse_args()
 # Get main config dict and check if keys missing
 main_cfg_dict = _get_cfg_dict('main')
 check_main_cfg_retval = _check_user_cfg_dict('main', main_cfg_dict)
 # Override logging configuration with command-line arguments
 override_retval = override_config_with_args(main_cfg_dict, parser)

 # ==============================
 # Logging setup from config file
 # ==============================
 # NOTE: if quiet and verbose are both activated, only quiet will have an effect
 check_log_cfg_retval = None
 if main_cfg_dict['quiet']:
 # TODO: disable logging completely? even error messages?
 logger.disabled = True
 else:
 # Setup logger
 logging_cfg_dict = _get_cfg_dict('log')
 # NOTE: returned value not used
 check_log_cfg_retval = _check_user_cfg_dict('log', logging_cfg_dict)
 if main_cfg_dict['verbose']:
 keys = ['handlers', 'loggers']
 for k in keys:
 for name, val in logging_cfg_dict[k].items():
 val['level'] = "DEBUG"
 logging.config.dictConfig(logging_cfg_dict)
 if __name__ == '__main__':
 logger_name = "{}.{}".format(
 package_name,
 os.path.splitext(__file__)[0])
 else:
 logger_name = __name__
 logger = logging.getLogger(logger_name)

 # ==
 # Start logging and process previous returned values
 # ==
 logger.info("Running {} v{}".format(package_name, package_version))
 logger.debug("Package path: {}".format(package_path[0]))
 logger.info("Verbose option {}".format(
 "enabled" if main_cfg_dict['verbose'] else "disabled"))
 # Process first returned values: checking config files
 if check_main_cfg_retval.keys_not_found \
 or check_log_cfg_retval.keys_not_found:
 for retval in [check_main_cfg_retval, check_log_cfg_retval]:
 if retval.keys_not_found:
 logger.info(
 "checked configuration file '{}': {} keys missing".format(
 os.path.basename(retval.user_cfg_filepath),
 len(retval.keys_not_found)))
 for i, k in enumerate(retval.keys_not_found):
 logger.warning("{}) Key '{}' not found. Added it in the "
 "configuration dict with default "
 "values.".format(i+1, k))
 logger.info("Saved updated configuration dict to file: "
 "{}".format(retval.user_cfg_filepath))
 # Process second returned values: overridden config options
 if override_retval.config_opts_overridden:
 msg = "Config options overridden by command-line arguments:\n"
 config_opts_overridden = override_retval.config_opts_overridden
 nb_items = len(config_opts_overridden)
 for i, (cfg_name, old_v, new_v) in enumerate(config_opts_overridden):
 msg += "\t {}: {} --> {}".format(cfg_name, old_v, new_v)
 if i + 1 < nb_items:
 msg += "\n"
 logger.debug(msg)
 # Process third returned values: arguments not found in cfg file
 if override_retval.args_not_found:
 msg = "Command-line arguments not found in JSON config file: " \
 "{}".format(override_retval.args_not_found)
 logger.debug(msg)

 # =======
 # Actions
 # =======
 retcode = 0
 # TODO: enlarge try? even if logger not setup completely
 try:
 _check_sound_files(main_cfg_dict)
 if args.app and not args.edit:
 raise RuntimeError("You need to also specify the edit argument "
 "'-e'")
 elif args.edit:
 if args.edit == _MAIN_CFG:
 args.edit = "main"
 elif args.edit == _LOG_CFG:
 args.edit = "log"
 else:
 raise ValueError(
 "edit argument not valid: '{}' (choose from {})".format(
 args.edit,
 ", ".join("'{}'".format(i) for i in [_LOG_CFG,
 _MAIN_CFG])))
 retcode = edit_config(args.edit, args.app)
 else:
 if main_cfg_dict['simulation']:
 import SimulRPi.GPIO as GPIO
 GPIO.setchannels(main_cfg_dict['gpio_channels'])
 GPIO.setdefaultsymbols(main_cfg_dict['default_led_symbols'])
 GPIO.setprinting(not main_cfg_dict['quiet'])
 logger.debug("Simulation mode enabled")
 else:
 import RPi.GPIO as GPIO
 # Make sure the other custom modules use the correct GPIO module
 # based on whether we are working with the real GPIO or the
 # simulation one (SimulRPi.GPIO)
 import darth_vader_rpi.darth_vader as darth_vader
 darth_vader.GPIO = GPIO
 import darth_vader_rpi.ledutils as ledutils
 ledutils.GPIO = GPIO
 # TODO: works on UNIX shell only, not Windows
 # ref.: https://bit.ly/3f3A7dc
 # os.system("tput civis")
 dv = DarthVader(main_cfg_dict)
 retcode = dv.activate()
 except Exception as e:
 # TODO: explain this line
 # traceback.print_exc()
 if args.verbose:
 logger.exception(e)
 else:
 # logger.error(e.__repr__())
 # TODO: add next line in a utility function
 # TODO: add spaces?
 err_msg = "{}: {}".format(str(e.__class__).split("'")[1], e)
 logger.error(err_msg)
 retcode = 1
 except KeyboardInterrupt:
 # Might happen if error in Manager.{on_press(), on_release()} and then
 # ctrl+c. Not enough time given to stop all threads
 # TODO: dv.check_cleanup()
 # TODO: GPIO.manager.check_cleanup()
 if dv.th_slot_leds and dv.th_slot_leds.is_alive():
 dv.th_slot_leds.join()
 logger.warning("Abrupt exit: the thread '{}' was not cleanly "
 "stopped".format(dv.th_slot_leds.name))
 logger.debug(add_spaces_to_msg("Thread stopped: {}".format(
 dv.th_slot_leds.name)))
 retcode = 1
 if hasattr(GPIO, 'manager'):
 # Simulation only
 if (GPIO.manager.th_listener and
 GPIO.manager.th_listener.is_alive()) or \
 GPIO.manager.th_display_leds.is_alive():
 logger.warning("Abrupt exit: GPIO threads were not cleanly "
 "stopped")
 GPIO.cleanup()
 retcode = 1
 if retcode == 1:
 logger.warning("CAUSE: threads were not given enough time to "
 "be stopped at the moment of the raised exception. "
 "However, all threads are now stopped.")

 finally:
 if main_cfg_dict['quiet']:
 print()
 return retcode

if __name__ == '__main__':
 retcode = main()
 msg = "Program exited with {}".format(retcode)
 if retcode == 1:
 logger.error(add_spaces_to_msg(msg))
 else:
 logger.info(add_spaces_to_msg(msg))

 utils

 Source code for utils

"""Collection of utilities for the *Darth-Vader-RPi* project.
"""
import codecs
import json
import os
import shlex
import subprocess
import sys
from collections import namedtuple, OrderedDict

os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = "hide"
import pygame

from darth_vader_rpi import configs

TODO: explain
_CFG_EXT = "json"
_LOG_CFG_FILENAME = 'logging_cfg'
_MAIN_CFG_FILENAME = 'main_cfg'
_CFG_FILENAMES = namedtuple("cfg_filenames", "user_cfg default_cfg")

def _add_cfg_filenames():
 """TODO
 """
 _CFG_FILENAMES.user_cfg = {
 'log': '{}.'.format(_LOG_CFG_FILENAME) + _CFG_EXT,
 'main': '{}.'.format(_MAIN_CFG_FILENAME) + _CFG_EXT}
 _CFG_FILENAMES.default_cfg = dict(
 [("default_" + k, "default_" + v)
 for k, v in _CFG_FILENAMES.user_cfg.items()])

_add_cfg_filenames()

TODO: clear buffer?
[docs]def add_spaces_to_msg(msg, nb_spaces=60):
 """Add spaces at the end of a message.

 Parameters

 msg : str
 Message to be updated with spaces at the end.
 nb_spaces : int
 Number of spaces to add at the end of the message. The default value is
 60.

 Returns

 message : str
 The updated message with spaces added at the end.

 """
 return "{}{}".format(msg, " " * nb_spaces)

TODO: fix in genutils new changes
[docs]def dumps_json(filepath, data, encoding='utf8', ensure_ascii=False,
 indent=None, sort_keys=False):
 """Write data to a JSON file.

 The data is first serialized to a JSON formatted string and then saved
 to disk.

 Parameters

 filepath : str
 Path to the JSON file where the data will be saved.
 data
 Data to be written to the JSON file.
 encoding : str, optional
 Encoding to be used for opening the JSON file in write mode (the
 default value is '*utf8*').
 ensure_ascii : bool, optional
 If ``ensure_ascii`` is *False*, then the return value can contain
 non-ASCII characters if they appear in strings contained in ``data``.
 Otherwise, all such characters are escaped in JSON strings. See the
 ``json.dumps`` docstring description (the default value is *False*).
 indent : int or None, optional
 If ``indent`` is a non-negative integer, then JSON array elements and
 object members will be pretty-printed with that indent level. An indent
 level of 0 will only insert newlines. :obj:`None` is the most compact
 representation. See the :meth:`json.dumps` docstring description. (the
 default value is :obj:`None`).
 sort_keys : bool, optional
 If ``sort_keys`` is *True*, then the output of dictionaries will be
 sorted by key. See the ``json.dumps`` docstring description. (the
 default value is *False*).

 Raises

 OSError
 Raised if any I/O related error occurs while writing the data to disk,
 e.g. the file doesn't exist.

 """
 try:
 with codecs.open(filepath, 'w', encoding) as f:
 f.write(json.dumps(data,
 ensure_ascii=ensure_ascii,
 indent=indent,
 sort_keys=sort_keys))
 except OSError:
 raise

[docs]def get_cfg_dirpath():
 """Get the path to the directory containing the config files.

 Returns

 dirpath : str
 The path to the directory containing the config files.

 """
 return configs.__path__[0]

[docs]def get_cfg_filepath(file_type):
 """Get the path to a config file used by the script :mod:`start_dv`.

 ``file_type`` accepts the following values:

 - **default_log**: refers to the `default logging configuration file`_ used
 to setup the logging for all custom modules.
 - **default_main**: refers to the `default main configuration file`_ used to
 setup the script :mod:`start_dv`.
 - **log**: refers to the user-defined logging configuration file which is
 used to setup the logging for all custom modules.
 - **main**: refers to the user-defined main configuration file used to
 setup the script :mod:`start_dv`.

 Parameters

 file_type : str, {'*default_log*', '*default_main*', '*log*', '*main*'}
 The type of config file for which we want the path.

 Returns

 filepath : str
 The path to the config file.

 Raises

 AssertionError
 Raised if the wrong type of config file is given to the function. Only
 {'*default_log*', '*default_main*', '*log*', '*main*'} are accepted for
 ``file_type``.

 """
 # TODO: explain
 valid_file_types = list(_CFG_FILENAMES.user_cfg.keys()) \
 + list(_CFG_FILENAMES.default_cfg.keys())
 assert file_type in valid_file_types, \
 "Wrong type of config file: '{}' (choose from {})".format(
 file_type, ", ".join(valid_file_types))
 if file_type.startswith('default'):
 filename = _CFG_FILENAMES.default_cfg[file_type]
 else:
 filename = _CFG_FILENAMES.user_cfg[file_type]
 return os.path.join(get_cfg_dirpath(), filename)

TODO: test if include Python 3.6
[docs]def load_json(filepath, encoding='utf8'):
 """Load JSON data from a file on disk.

 If using Python version betwee 3.0 and 3.6 (inclusive), the data is
 returned as :obj:`collections.OrderedDict`. Otherwise, the data is
 returned as :obj:`dict`.

 Parameters

 filepath : str
 Path to the JSON file which will be read.
 encoding : str, optional
 Encoding to be used for opening the JSON file in read mode (the default
 value is '*utf8*').

 Returns

 data : dict or collections.OrderedDict
 Data loaded from the JSON file.

 Raises

 OSError
 Raised if any I/O related error occurs while reading the file, e.g. the
 file doesn't exist.

 References

 `Are dictionaries ordered in Python 3.6+? (stackoverflow)`_

 """
 try:
 with codecs.open(filepath, 'r', encoding) as f:
 if sys.version_info.major == 3 and sys.version_info.minor <= 6:
 data = json.load(f, object_pairs_hook=OrderedDict)
 else:
 data = json.load(f)
 except OSError:
 raise
 else:
 return data

[docs]def override_config_with_args(config, parser):
 """Override a config dictionary with arguments from the command-line.

 Parameters

 config : dict
 Dictionary containing configuration options.
 parser : argparse.ArgumentParser
 Argument parser.

 Returns

 retval : :obj:`collections.namedtuple`
 Contains two lists:

 1. `args_not_found`: saves command-line arguments not found in the
 config dictionary

 2. `config_opts_overridden`: saves config options overridden by
 command-line arguments as a three-tuple (option name, old value,
 new value)

 """
 args = parser.parse_args().__dict__
 parser_actions = parser.__dict__['_actions']
 retval = namedtuple("retval", "args_not_found config_opts_overridden")
 retval.args_not_found = []
 retval.config_opts_overridden = []
 for action in parser_actions:
 opt_name = action.dest
 old_val = config.get(opt_name)
 if old_val is None:
 retval.args_not_found.append(opt_name)
 else:
 new_val = args.get(opt_name)
 if new_val is None:
 continue
 if new_val != action.default and new_val != old_val:
 config[opt_name] = new_val
 retval.config_opts_overridden.append((opt_name, old_val, new_val))
 return retval

NOTE: taken from pyutils.genutils
[docs]def run_cmd(cmd):
 """Run a shell command with arguments.

 The shell command is given as a string but the function will split it in
 order to get a list having the name of the command and its arguments as
 items.

 Parameters

 cmd : str
 Command to be executed, e.g. ::

 open -a TextEdit text.txt

 Returns

 retcode: int
 Returns code which is 0 if the command was successfully completed.
 Otherwise, the return code is non-zero.

 Raises

 FileNotFoundError
 Raised if the command ``cmd`` is not recognized, e.g.
 ``$ TextEdit {filepath}`` since `TextEdit` is not an executable.

 """
 try:
 if sys.version_info.major == 3 and sys.version_info.minor <= 6:
 # TODO: PIPE not working as arguments and capture_output new in
 # Python 3.7
 # Ref.: https://stackoverflow.com/a/53209196
 # https://bit.ly/3lvdGlG
 result = subprocess.run(shlex.split(cmd))
 else:
 result = subprocess.run(shlex.split(cmd), capture_output=True)
 except FileNotFoundError:
 raise
 else:
 return result

[docs]class SoundWrapper:
 """Class that wraps around :class:`pygame.mixer.Channel` and
 :class:`pygame.mixer.Sound`.

 The ``__init__`` method takes care of automatically loading the sound
 file. The sound file can then be played or stopped from the specified
 channel ``channel_id`` with the :meth:`play` or :meth:`stop` method,
 respectively.

 Parameters

 sound_id : str
 A unique identifier.
 sound_name : str
 Name of the sound file that will be displayed in the terminal.
 sound_filepath : str
 Path to the sound file.
 channel_id : int
 Channel id associated with an instance of
 :class:`pygame.mixer.Channel` for controlling playback. It must take an
 :obj:`int` value starting from 0.
 mute : bool, optional
 If set to `True`, the sound will not be played. The default value is
 `False`.

 .. note::

 It is a wrapper with a very minimal interface to
 :class:`pygame.mixer.Channel` where only two methods :meth:`play` and
 :meth:`stop` are provided for the sake of the project.

 """

 def __init__(self, sound_id, sound_name, sound_filepath, channel_id,
 mute=False):
 self.sound_id = sound_id
 self.sound_name = sound_name
 self.sound_filepath = sound_filepath
 self.channel_id = channel_id
 self.mute = mute
 self._channel = pygame.mixer.Channel(channel_id)
 # Load sound file
 self._pygame_sound = pygame.mixer.Sound(self.sound_filepath)

[docs] def play(self, loops=0):
 """Play a sound on the specified Channel ``channel_id``.

 Parameters

 loops : int
 Controls how many times the sample will be repeated after being
 played the first time. The default value (zero) means the sound is
 not repeated, and so is only played once. If ``loops`` is set to -1
 the sound will loop indefinitely (though you can still call
 :meth:`stop` to stop it).

 Reference: :meth:`pygame.mixer.Sound.play`

 """
 self._channel.play(self._pygame_sound, loops)

[docs] def stop(self):
 """Stop playback on the specified channel ``channel_id``.
 """
 self._channel.stop()

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Darth-Vader-RPi’s documentation

 		
 README

 		
 Introduction

 		
 Connection diagram

 		
 Dependencies

 		
 Installation instructions

 		
 Usage

 		
 Script start_dv

 		
 Simulating on your computer

 		
 How to uninstall

 		
 Credits

 		
 Sounds

 		
 Others

 		
 Resources

 		
 References

 		
 The main configuration file

 		
 audio_channels

 		
 default_led_symbols

 		
 gpio_channels

 		
 mode

 		
 quiet

 		
 quotes

 		
 simulation

 		
 slot_leds

 		
 songs

 		
 sound_effects

 		
 sounds_directory

 		
 verbose

 		
 Change the default settings

 		
 Important tips

 		
 Add Darth Vader quotes

 		
 Change channel volume

 		
 Change closing sound

 		
 Change GPIO channel name and number

 		
 Change keymap

 		
 Change LED symbols

 		
 Case 1: change default_led_symbols

 		
 Case 2: change gpio_channels

 		
 Change paths to audio files

 		
 Change slot LEDs sequence

 		
 Mute breathing sound

 		
 Run the script as quiet or verbose

 		
 API Reference

 		
 darth_vader_rpi.start_dv

 		
 Usage

 		
 darth_vader_rpi.darth_vader

 		
 darth_vader_rpi.ledutils

 		
 darth_vader_rpi.utils

 		
 Changelog

